What does #sin(arccos(6))-csc(arccos(12))# equal?
1 Answer
#sin(arccos(6))-csc(arccos(12)) = (sqrt(35)+sqrt(143)/143)i#
Explanation:
The range of
However, it is possible to define Complex valued functions of Complex numbers,
#e^(iz) = cos z + i sin z#
#cos(-z) = cos(z)#
#sin(-z) = -sin(z)#
to find:
#cos(z) = (e^(iz)+e^(-iz))/2#
#sin(z) = (e^(iz)-e^(-iz))/(2i)#
We find:
#cos^2 z + sin^2 z#
#=(e^(iz)+e^(-iz))^2/4 + (e^(iz)-e^(-iz))^2/(2i)^2#
#=((e^(iz)+e^(-iz))^2 - (e^(iz)-e^(-iz))^2)/4#
#=4/4 = 1#
So the identity
Hence:
#sin(arccos(6)) = sqrt(1-6^2) = sqrt(-35) = sqrt(35) i#
#csc(arccos(12)) = 1/sin(arccos(12)) = 1/sqrt(1-12^2) = 1/sqrt(-143) = 1/(isqrt(143)) = -sqrt(143)/143 i#
So:
#sin(arccos(6))-csc(arccos(12)) = (sqrt(35)+sqrt(143)/143)i#