First, convert each mixed number to an improper fraction:
1 1/15 = 1 + 1/5 = (15/15 xx 1) + 1/15 15/15 + 1/15 = (15 + 1)/15 = 16/151115=1+15=(1515×1)+1151515+115=15+115=1615
3 3/10 = 3 + 3/10 = (10/10 xx 3) + 3/10 = 30/10 + 3/10 = (30 + 3)/10 = 33/103310=3+310=(1010×3)+310=3010+310=30+310=3310
2 4/5 = 2 + 4/5 = (5/5 xx 2) + 4/5 = 10/5 + 4/5 = (10 + 4)/5 = 14/5245=2+45=(55×2)+45=105+45=10+45=145
We can rewrite the expression as:
16/15 + 33/10 + 14/51615+3310+145
To add fractions they must be over common denominators. We can multiply each fraction by the appropriate form of 11 and then add the numerators:
(2/2 xx 16/15) + (3/3 xx 33/10) + (6/6 xx 14/5) =>(22×1615)+(33×3310)+(66×145)⇒
(2 xx 16)/(2 xx 15) + (3 xx 33)/(3 xx 10) + (6 xx 14)/(6 xx 5) =>2×162×15+3×333×10+6×146×5⇒
32/30 + 99/30 + 84/30 =>3230+9930+8430⇒
(32 + 99 + 84)/30 =>32+99+8430⇒
(131 + 84)/30 =>131+8430⇒
215/3021530
If necessary, we can convert this to a mixed number:
215/30 = (210 + 5)/30 = 210/30 + 5/30 = 7 + 5/30 = 7 + 1/6 = 7 1/621530=210+530=21030+530=7+530=7+16=716