First, we can write:
#x = 0.bar123#
Next, we can multiply each side by #1000# giving:
#1000x = 123.bar123#
Then we can subtract each side of the first equation from each side of the second equation giving:
#1000x - x = 123.bar123 - 0.bar123#
We can now solve for #x# as follows:
#1000x - 1x = (123 + 0.bar123) - 0.bar123#
#(1000 - 1)x = 123 + 0.bar123 - 0.bar123#
#999x = 123 + (0.bar123 - 0.bar123)#
#999x = 123 + 0#
#999x = 123#
#(999x)/color(red)(999) = 123/color(red)(999)#
#(color(red)(cancel(color(black)(999)))x)/cancel(color(red)(999)) = (3 xx 41)/color(red)(3 xx 333)#
#x = (color(red)(cancel(color(black)(3))) xx 41)/color(red)(color(black)(cancel(color(red)(3))) xx 333)#
#x = 41/333#