What is cos(arccos (3/5) - arcsin (4/5))cos(arccos(35)arcsin(45))?

2 Answers
Jul 14, 2018

1.1.

Explanation:

Let, arcsin(4/5)=alphaarcsin(45)=α.

:. sinalpha=4/5, where, alpha in [-pi/2,pi/2]=Q_1uuQ_4.

But, since sinalpha=4/5 gt 0, alpha !in Q_4 :. alpha in Q_1.

Now, cos^2alpha=1-sin^2alpha=1-(4/5)^2=9/25.

Knowing that, alpha in Q_1, cosalpha=+sqrt(9/25)=+3/5.

Thus, cosalpha=3/5, where, alpha in Q_1=[0,pi/2] sub [0,pi].

:." by definition, "arccos(3/5)=alpha=arcsin(4/5).

rArr (arccos(3/5)-arcsin(4/5))=0.

Consequently, cos(arccos(3/5)-arcsin(4/5))=cos0=1.

color(purple)("Enjoy Maths.!")

Jul 14, 2018

1

Explanation:

cos((arccos)(3/5)-arc sine (4/5))

:.=cos((arccos(0.6)-arc sine (0.8))#

:.=cos(53^@7'48''-53^@7'48'')

:.cos(0)=1