What is #cos[Arcsin(-4/5)]#?

1 Answer
Jul 21, 2015

#3/5#

Explanation:

First consider that : #epsilon=arcsin(-4/5)#

#epsilon# simply represents an angle.

This means that we are looking for #color(red)cos(epsilon)!#

If #epsilon=arcsin(-4/5)# then,

#=>sin(epsilon)=-4/5#

To find #cos(epsilon)# We use the identity : #cos^2(epsilon)=1-sin^2(epsilon)#

#=>cos(epsilon)=sqrt(1-sin^2(epsilon)#

#=>cos(epsilon)=sqrt(1-(-4/5)^2)=sqrt((25-16)/25)=sqrt(9/25)=color(blue)(3/5)#