What is cos(arcsin(513)+arccos(1213))?

1 Answer
Jul 21, 2015

=1

Explanation:

First you want to let α=arcsin(513) and β=arccos(1213)

So now we are looking for cos(α+β)!

sin(α)=513 and cos(β)=1213

Recall : cos2(α)=1sin2(α)cos(α)=1sin2(α)

cos(α)=1(513)2=16925169=144169=1213

Similarly, cos(β)=1213

sin(β)=1cos2(β)=1(1213)2=169144169=25169=513

cos(α+β)=cos(α)cos(β)sin(α)sin(β)

Then substitue all the values obtained ealier.

cos(α+β)=12131213(513)513=144169+25169=169169=1