f(x)=int1/(x^2+3) = 1/sqrt3 tan^-1(x/sqrt3) +Cf(x)=∫1x2+3=1√3tan−1(x√3)+C
f(2)=1/sqrt3 tan^-1(2/sqrt3) +C=1f(2)=1√3tan−1(2√3)+C=1
C=1-(1/sqrt3 tan^-1(2/sqrt3))~~0.505C=1−(1√3tan−1(2√3))≈0.505
f(x)=int1/(x^2+3) = 1/sqrt3 tan^-1(x/sqrt3) +0.505f(x)=∫1x2+3=1√3tan−1(x√3)+0.505