What is f(x) = int 1/(x^2+3) f(x)=1x2+3 if f(2)=1 f(2)=1?

1 Answer
Mar 16, 2016

f(x)=int1/(x^2+3) = 1/sqrt3 tan^-1(x/sqrt3) +Cf(x)=1x2+3=13tan1(x3)+C
f(2)=1/sqrt3 tan^-1(2/sqrt3) +C=1f(2)=13tan1(23)+C=1
C=1-(1/sqrt3 tan^-1(2/sqrt3))~~0.505C=1(13tan1(23))0.505
f(x)=int1/(x^2+3) = 1/sqrt3 tan^-1(x/sqrt3) +0.505f(x)=1x2+3=13tan1(x3)+0.505