Here,
I=int_0^8 sqrt(8x-x^2dx
=int_0^8sqrt(16-(x^2-8x+16))dx
=int_0^8sqrt(4^2-(x-4)^2)dx
We know that ,
color(red)(intsqrt(a^2-X^2)dX=X/2sqrt(a^2-X^2)+a^2/2sin^-1(X/a)+c
Put, a=4 and X=x-4
I=[(x-4)/4sqrt(4^2-(x-4)^2)+4^2/2sin^-1((x-4)/4)]_0^8
=>I=[(x-4)/4sqrt(8x-x^2)+8sin^-1((x-4)/4)]_0^8
=>I=[(8-4)/4sqrt(64-64)+8sin^-1((8-4)/4)]-[(0-4)/4sqrt(0-
0^2)+8sin^-1((0-4)/4)]
=[0+8sin^-1(1)]-[0+8sin^-1(-1)]
=8sin^-1(1)-8sin^-1(-1)
=8sin^-1(1)+8sin^-1(1)
=8(pi/2)+8(pi/2)
=4pi+4pi
=8pi