What is int_(0)^(8) sqrt( 8x-x^(2))dx ?

1 Answer
Apr 18, 2018

I=8pi

Explanation:

Here,

I=int_0^8 sqrt(8x-x^2dx

=int_0^8sqrt(16-(x^2-8x+16))dx

=int_0^8sqrt(4^2-(x-4)^2)dx

We know that ,

color(red)(intsqrt(a^2-X^2)dX=X/2sqrt(a^2-X^2)+a^2/2sin^-1(X/a)+c

Put, a=4 and X=x-4

I=[(x-4)/4sqrt(4^2-(x-4)^2)+4^2/2sin^-1((x-4)/4)]_0^8

=>I=[(x-4)/4sqrt(8x-x^2)+8sin^-1((x-4)/4)]_0^8

=>I=[(8-4)/4sqrt(64-64)+8sin^-1((8-4)/4)]-[(0-4)/4sqrt(0- 0^2)+8sin^-1((0-4)/4)]

=[0+8sin^-1(1)]-[0+8sin^-1(-1)]

=8sin^-1(1)-8sin^-1(-1)

=8sin^-1(1)+8sin^-1(1)

=8(pi/2)+8(pi/2)

=4pi+4pi

=8pi