What is #int ( 1+x)/(1+x^2)dx#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Narad T. Mar 23, 2018 The answer is #=arctan(x)+1/2ln(1+x^2)+C# Explanation: The integral is #int((1+x)dx)/(1+x^2)=int(1dx)/(1+x^2)+int(xdx)/(1+x^2)# #I=I_1+I_2# #I_1# is a standard integral #I_1=arctan(x)# For #I_2#, perform the substitution #u=1+x^2#, #=>#, #du=2xdx# Therefore, #I_2=1/2int(du)/(u)=1/2ln(u)# #=1/2ln(1+x^2)# And finally, #int((1+x)dx)/(1+x^2)=arctan(x)+1/2ln(1+x^2)+C# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 1709 views around the world You can reuse this answer Creative Commons License