What is #int ln(2x)#?

2 Answers
Nov 4, 2015

I found: #x(ln(2x)-1)#

Explanation:

You can try setting:
#ln(2x)=t# so:
#2x=e^t#
#x=1/2e^t#
#dx=1/2e^tdt#
The integral becomes:
#intln(2x)dx=intte^t1/2dt=#
This can be solved using Integration by Parts:
#=1/2[te^t-inte^t*1dt]=#
#=1/2[te^t-e^t]=#
#=1/2e^t(t-1)#
Back to #x#:
#=(1/2)2x(ln(2x)-1)=x(ln(2x)-1)#

You can go like this

#int ln2xdx=int dx/dx*ln2xdx=xln2x-int x*dln(2x)/dxdx=xln2x-int x*2/(2x)dx=x*ln2x-x+c#

(*) We used integration by parts hence

#int f'(x)*g(x)dx=f(x)*g(x)-int f(x)*g'(x)dx#

where #f(x)=x# and #g(x)=ln2x#