What is lim _(xrarr 0) (8x^2)/(cos(x)-1) and how do you get the answer?

1 Answer

It is -16

Explanation:

Hence the limit x->0 gives an indeterminate form of 0/0
we can apply L’Hospital’s Rule hence

lim_(x->0) (8x^2)/(cosx-1)=lim_(x->0) (d(8x^2))/dx/[((d(cosx-1))/dx)]= lim_(x->0) (16x)/(-sinx)=lim_(x->0) -16/(sinx/x)=-16/[lim_(x->0)sinx/x]= -16/1=-16

Remember that lim_(x->0)sinx/x=1