What is lim_(xrarr-3) (2x+6)/|x+3|?

1 Answer
Jul 7, 2016

lim_(xrarr-3^-) (2x+6)/|x+3| = -2

lim_(xrarr-3^+) (2x+6)/|x+3| = +2

Explanation:

lim_(xrarr-3) (2x+6)/|x+3|

let x = -3 + h, 0 < abs h "<<" 1

so the lim becomes

lim_( h to 0) (2(-3+h)+6)/|(-3+h)+3|

=lim_( h to 0) (2h)/(|h|) =lim_( h to 0) 2 h/abs h

for the left sided limit, h < 0 so we have "-ve"/"+ve" = "-ve"

so lim_(xrarr-3^-) (2x+6)/|x+3| = -2

for the right sided limit, h > 0 so we have "+ve"/"+ve" = "+ve"

so lim_(xrarr-3^+) (2x+6)/|x+3| = +2