What is lim_(xrarr0+) ( x )^(2x)?

1 Answer
Nov 2, 2015

lim_(xrarr0+) ( x )^(2x) = 1

Explanation:

x^(2x)= e^ln(x^(2x)) = e^(2xlnx)

We shall find lim_(xrarr0^+)2xlnx = L

So that lim_(xrarr0^+)x^(2x) = e^L

lim_(xrarr0^+)2xlnx has indeterminate form 0*-oo, so we rewrite:

lim_(xrarr0^+)2xlnx = 2lim_(xrarr0^+)lnx/(1/x) which now has form oo/oo

So we can apply l'Hopital's Rule:

2lim_(xrarr0^+)lnx/(1/x) = 2lim_(xrarr0^+)(1/x)/(-1/x^2)

= 2lim_(xrarr0^+)x = 0

We conclude that

lim_(xrarr0+) ( x )^(2x) = lim_(xrarr0+) e^(2xlnx) = e^0 = 1