What is lim_(xrarroo)(ln(6x+10)-ln(7+3x))?

1 Answer
Oct 31, 2015

I found: ln2

Explanation:

Using a property of logs we can write:

lim_(x->oo)[ln(6x+10)-ln(7+3x)]=

=lim_(x->oo)[ln((6x+10)/(7+3x))]=

collect x:

=lim_(x->oo)[ln((cancel(x)(6+10/x))/(cancel(x)(7/x+3)))]=

as x->oo then a/x->0 so:

=lim_(x->oo)[ln(((6+10/x))/((7/x+3)))]=ln(6/3)=ln2