What is lim_(xrarroo)(ln(9x+10)-ln(2+3x^2))?

1 Answer
Nov 8, 2015

lim_(xrarroo)(ln(9x+10)-ln(2+3x^2)) = -oo

Explanation:

lim_(xrarroo)(ln(9x+10)-ln(2+3x^2)) = lim_(xrarroo)ln((9x+10)/(3x^2+2))

Note that lim_(xrarroo)((9x+10)/(3x^2+2)) = 0.

And recall that lim_(urarr0^+)lnu = -oo, so

lim_(xrarroo)(ln(9x+10)-ln(2+3x^2)) = lim_(xrarroo)ln((9x+10)/(3x^2+2)) = -oo

Note

The function goes to -oo as xrarroo, but it goes very, very slowly. Here is the graph:

graph{(ln(9x+10)-ln(2+3x^2)) [-23.46, 41.47, -21.23, 11.23]}