What is tan(arcsin(1213))?

1 Answer
Jul 21, 2015

tan(arcsin(1213))=125

Explanation:

Let θ=arcsin(1213)

This means that we are now looking for tanθ!

sin(θ)=1213

Use the identity,

cos2θ+sin2θ=1

cos2θ+sin2θcos2θ=1cos2θ

1+sin2θcos2θ=1cos2θ

1+tan2θ=1cos2θ

tanθ=1cos2(θ)1

Recall : cos2θ=1sin2θ

tanθ=11sin2θ1

tanθ=  11(1213)21

tanθ=1691691441

tanθ=169251

tanθ=1445=125

REMEMBER what we called θ was actually arcsin(1213)

tan(arcsin(1213))=125