What is Tan(arcsin(3/5)+arccos(5/7))?

2 Answers

\color{red}{\tan(\sin^{-1}(3/5)+\cos^{-1}(5/7))}=\color{blue}{\frac{294+125\sqrt6}{92}}

\approx 6.5237

Explanation:

Given that

\tan(\sin^{-1}(3/5)+\cos^{-1}(5/7))

=\tan(\sin^{-1}(3/5\cdot 5/7+4/5\cdot \frac{2\sqrt6}{7}))

=\tan(\sin^{-1}(\frac{15+8\sqrt6}{35}))

=\tan(\sin^{-1}(\frac{15+8\sqrt6}{35}))

=\tan(\tan^{-1}(\frac{\frac{15+8\sqrt6}{35}}{\sqrt{1-(\frac{15+8\sqrt6}{35})^2}}))

=\tan(\tan^{-1}(\frac{15+8\sqrt6}{\sqrt{616-240\sqrt6}}))

=\frac{15+8\sqrt6}{\sqrt{616-240\sqrt6}}

=\frac{\sqrt{180186+73500\sqrt6}}{92}

=\frac{\sqrt{(294)^2+(125\sqrt6)^2+2(294)(125\sqrt6) }}{92}

=\frac{294+125\sqrt6}{92}

\approx 6.523763237

Jul 11, 2018

tan(arcsin(3/5)+arccos(5/7)) = 147/46+125/92sqrt(6)

Explanation:

Consider right angled triangles with sides:

3, 4, 5

5, 2sqrt(6), 7

Remember:

sin(theta) = "opposite"/"hypotenuse"

cos(theta) = "adjacent"/"hypotenuse"

tan(theta) = "opposite"/"adjacent"

Hence:

tan(arcsin(3/5)) = 3/4

tan(arccos(5/7)) = (2sqrt(6))/5

Note that:

tan(alpha+beta) = (tan alpha + tan beta) / (1 - tan alpha tan beta)

So we find:

tan(arcsin(3/5)+arccos(5/7)) = tan(arctan(3/4)+arctan((2sqrt(6))/5))

color(white)(tan(arcsin(3/5)+arccos(5/7))) = (3/4+(2sqrt(6))/5)/(1-(3/4)((2sqrt(6))/5))

color(white)(tan(arcsin(3/5)+arccos(5/7))) = (15+8sqrt(6))/(20-6sqrt(6))

color(white)(tan(arcsin(3/5)+arccos(5/7))) = ((15+8sqrt(6))(10+3sqrt(6)))/((20-6sqrt(6))(10+3sqrt(6)))

color(white)(tan(arcsin(3/5)+arccos(5/7))) = (150+45sqrt(6)+80sqrt(6)+144)/(200-108)

color(white)(tan(arcsin(3/5)+arccos(5/7))) = (294+125sqrt(6))/92

color(white)(tan(arcsin(3/5)+arccos(5/7))) = 147/46+125/92sqrt(6)