What is Tan(arcsin(3/5)+arccos(5/7))?
2 Answers
Explanation:
Given that
Explanation:
Consider right angled triangles with sides:
3, 4, 5
5, 2sqrt(6), 7
Remember:
sin(theta) = "opposite"/"hypotenuse"
cos(theta) = "adjacent"/"hypotenuse"
tan(theta) = "opposite"/"adjacent"
Hence:
tan(arcsin(3/5)) = 3/4
tan(arccos(5/7)) = (2sqrt(6))/5
Note that:
tan(alpha+beta) = (tan alpha + tan beta) / (1 - tan alpha tan beta)
So we find:
tan(arcsin(3/5)+arccos(5/7)) = tan(arctan(3/4)+arctan((2sqrt(6))/5))
color(white)(tan(arcsin(3/5)+arccos(5/7))) = (3/4+(2sqrt(6))/5)/(1-(3/4)((2sqrt(6))/5))
color(white)(tan(arcsin(3/5)+arccos(5/7))) = (15+8sqrt(6))/(20-6sqrt(6))
color(white)(tan(arcsin(3/5)+arccos(5/7))) = ((15+8sqrt(6))(10+3sqrt(6)))/((20-6sqrt(6))(10+3sqrt(6)))
color(white)(tan(arcsin(3/5)+arccos(5/7))) = (150+45sqrt(6)+80sqrt(6)+144)/(200-108)
color(white)(tan(arcsin(3/5)+arccos(5/7))) = (294+125sqrt(6))/92
color(white)(tan(arcsin(3/5)+arccos(5/7))) = 147/46+125/92sqrt(6)