What is the angle between <0,-7,6> and <-1,9,-3>?

1 Answer
Oct 19, 2016

theta=arccos(-81/sqrt(7735))~~2.7414

Explanation:

We'll use the fact that the dot product vec(u)*vec(v) can be calculated in two ways:

vec(u)*vec(v) = u_1v_1+u_2v_2+u_3v_3 = ||vecu||*||vecv||cos(theta)

Dividing by ||vecu||*||vecv||, we get

cos(theta) = (u_1v_1+u_2v_2+u_3v_3)/(||vecu||*||vecv||)

or

theta = arccos((u_1v_1+u_2v_2+u_3v_3)/(||vecu||*||vecv||))

In our case, we have vecu = < 0, -7, 6 > and vecv = < -1, 9, -3 >.

If we calculate their magnitudes, we get

||vecu|| = sqrt(0^2+(-7)^2+6^2) = sqrt(85)
and
||vecv|| = sqrt((-1)^2+9^2+(-3)^2) = sqrt(91)

So, the formula we derived gives us

theta = arccos((0(-1)+(-7)(9)+6(-3))/(sqrt(85)*sqrt(91)))

=arccos(-81/sqrt(7735))

~~2.7414