What is the angle between <-1,-2,8 > <1,2,8> and <-2,6,-4> <2,6,4>?

1 Answer
Oct 25, 2016

THe angle is 126.9º

Explanation:

The angle is obtained by using the definition of the dot product
vecu.vecv=∣vecu∣*∣vecv∣costheta
where theta is the angle between the vectors (vecu,vecv)

So costheta=(vecu.vecv)/(∣vecu∣*∣vecv∣)

Here vecu=〈-1,-2,8〉

and vecv=〈-2,6,-4〉

The dot product is given by vecu.vecv=〈u_1,u_2,u_3〉〈v_1,v_2,v_3〉=u_1v_1+u_2v_2+u_3v_3
So vecu.vecv=2-6-32=-36

∣vecu∣=sqrt(u_1^2+u_2^2+u_3^2)=sqrt(1+4+64)=sqrt69

∣vecv∣=sqrt(v_1^2+v_2^2+v_3^2)=sqrt(4+36+16)=sqrt56

So costheta=-36/(sqrt69.sqrt56)=-0.601
theta=126.9º