What is the angle between <1 , 5 , 9 > <1,5,9> and < -2 , 3 , 2 > <2,3,2>?

1 Answer
Oct 23, 2016

theta ~~ 0.76 radiansθ0.76radians

Explanation:

Let barA = <1, 5, 9>¯¯¯A=<1,5,9>
Let barB = <-2,3,2>¯¯¯B=<2,3,2>

The barA*barB¯¯¯A¯¯¯B is:

barA*barB = (1)(-2) + (5)(3) + (9)(2) = 31¯¯¯A¯¯¯B=(1)(2)+(5)(3)+(9)(2)=31

|barA| = sqrt(1^2 + 5^2 + 9^2) = sqrt(107)¯¯¯A=12+52+92=107

|barB| = sqrt((-2)^2 + 3^2 + 2^2) = sqrt(17)¯¯¯B=(2)2+32+22=17

Use barA*barB = |barA||barB|cos(theta)¯¯¯A¯¯¯B=¯¯¯A¯¯¯Bcos(θ)

Solve for thetaθ

theta = cos^-1((barA*barB)/(|barA||barB|))θ=cos1(¯¯¯A¯¯¯B¯¯¯A¯¯¯B)

theta = cos^-1((31)/(sqrt(107)sqrt(17)))θ=cos1(3110717)

theta ~~ 0.76 radiansθ0.76radians