Let barA = <1, 5, 9>¯¯¯A=<1,5,9>
Let barB = <-2,3,2>¯¯¯B=<−2,3,2>
The barA*barB¯¯¯A⋅¯¯¯B is:
barA*barB = (1)(-2) + (5)(3) + (9)(2) = 31¯¯¯A⋅¯¯¯B=(1)(−2)+(5)(3)+(9)(2)=31
|barA| = sqrt(1^2 + 5^2 + 9^2) = sqrt(107)∣∣¯¯¯A∣∣=√12+52+92=√107
|barB| = sqrt((-2)^2 + 3^2 + 2^2) = sqrt(17)∣∣¯¯¯B∣∣=√(−2)2+32+22=√17
Use barA*barB = |barA||barB|cos(theta)¯¯¯A⋅¯¯¯B=∣∣¯¯¯A∣∣∣∣¯¯¯B∣∣cos(θ)
Solve for thetaθ
theta = cos^-1((barA*barB)/(|barA||barB|))θ=cos−1(¯¯¯A⋅¯¯¯B∣∣¯¯¯A∣∣∣∣¯¯¯B∣∣)
theta = cos^-1((31)/(sqrt(107)sqrt(17)))θ=cos−1(31√107√17)
theta ~~ 0.76 radiansθ≈0.76radians