What is the angle between <-1,8,6 > and < -6,3,0>?

1 Answer
Dec 31, 2016

theta~~63.58^o

Explanation:

The equation for the angle between two vectors is given by:

cos(theta)=(veca*vecb)/(|veca|*|vecb|)

Where veca=< -1,8,6 > and vecb= < -6,3,0 >

First we find the dot product of the two vectotrs:

veca*vecb= < -1,8,6 > *< -6,3,0 >

=>(-1*-6)+(8*3)+(6*0)

=>6+24=30

Next, we find the product of the magnitude of each vector:

|veca|=sqrt((a_x)^2+(a_y)^2+(a_z)^2)

=>sqrt((-1)^2+(8)^2+(6)^2)

=>sqrt(1+64+36)

=>sqrt(101)

|vecb|=sqrt((b_x)^2+(b_y)^2+(b_z)^2)

=>sqrt((-6)^2+(3)^2+(0)^2)

=>sqrt(36+9+0)

=>sqrt(45)

And sqrt(45)*sqrt(101)=sqrt(4545)

Revisiting our original equation, we can solve for theta by taking the inverse cosine:

theta=cos^-1((veca*vecb)/(|veca|*|vecb|))

Substituting in our values found above:

theta=cos^-1((veca*vecb)/(|veca|*|vecb|))

=>theta=cos^-1((30)/(sqrt(4545)))

This comes out to ~~63.58^o or ~~1.11rad

Explanation of equation:

We can derive the given equation using a geometric interpretation of the vectors.

Given vectors veca and vecb:

enter image source here

By the law of cosines, given:

wiki

c^2=a^2+b^2-2abcos(theta)

Applying this to our vector-made triangle:

|veca-vecb|^2=|veca|^2+|vecb|^2-2|veca|*|vecb|cos(theta)

Simplifying:

=>(veca-vecb)*(veca-vecb)=(veca*veca)+(vecb*vecb)-2|veca|*vec|b|cos(theta)

=>cancel(veca^2)-2(veca*vecb)cancel(+vecb^2)=cancel(veca^2)+cancel(vecb^2)-2|veca|*vec|b|cos(theta)

=>-2(veca*vecb)=-2|veca|*vec|b|cos(theta)

=>(veca*vecb)=|veca|*vec|b|cos(theta)

Solve for cos(theta):

=>cos(theta)=(veca*vecb)/(|veca|*vec|b|)