What is the angle between <-1,8,6 > and < -6,3,0>?
1 Answer
Explanation:
The equation for the angle between two vectors is given by:
cos(theta)=(veca*vecb)/(|veca|*|vecb|) Where
veca=< -1,8,6 > andvecb= < -6,3,0 >
First we find the dot product of the two vectotrs:
veca*vecb= < -1,8,6 > *< -6,3,0 >
=>(-1*-6)+(8*3)+(6*0)
=>6+24=30
Next, we find the product of the magnitude of each vector:
|veca|=sqrt((a_x)^2+(a_y)^2+(a_z)^2)
=>sqrt((-1)^2+(8)^2+(6)^2)
=>sqrt(1+64+36)
=>sqrt(101)
|vecb|=sqrt((b_x)^2+(b_y)^2+(b_z)^2)
=>sqrt((-6)^2+(3)^2+(0)^2)
=>sqrt(36+9+0)
=>sqrt(45)
And
Revisiting our original equation, we can solve for
theta=cos^-1((veca*vecb)/(|veca|*|vecb|))
Substituting in our values found above:
theta=cos^-1((veca*vecb)/(|veca|*|vecb|))
=>theta=cos^-1((30)/(sqrt(4545)))
This comes out to
Explanation of equation:
We can derive the given equation using a geometric interpretation of the vectors.
Given vectors
By the law of cosines, given:
Applying this to our vector-made triangle:
|veca-vecb|^2=|veca|^2+|vecb|^2-2|veca|*|vecb|cos(theta)
Simplifying:
=>(veca-vecb)*(veca-vecb)=(veca*veca)+(vecb*vecb)-2|veca|*vec|b|cos(theta)
=>cancel(veca^2)-2(veca*vecb)cancel(+vecb^2)=cancel(veca^2)+cancel(vecb^2)-2|veca|*vec|b|cos(theta)
=>-2(veca*vecb)=-2|veca|*vec|b|cos(theta)
=>(veca*vecb)=|veca|*vec|b|cos(theta)
Solve for
=>cos(theta)=(veca*vecb)/(|veca|*vec|b|)