What is the angle between <-1,9,3 > <1,9,3> and < 5,-8,2 ><5,8,2>?

1 Answer
Aug 2, 2018

theta=cos^-1(-71/(sqrt8463))θ=cos1(718463)

Explanation:

Let , veca=<-1,9,3> and vecb=<5,-8,2>a=<1,9,3>andb=<5,8,2> be the two vectors.

:.|veca|=sqrt((-1)^2+(9)^2+(3)^2)=sqrt(1+81+9)=sqrt91

and|vecb|=sqrt((5)^2+(-8)^2+(2)^2)=sqrt(25+64+4)=sqrt93

Dot product : a*b=(-1)xx5+9xx(-8)+3xx2

:.a*b=-5-72+6=-71

Now the angle between veca and vecb is:

theta=cos^-1((a*b)/(|veca||vecb|))=cos^-1((-71)/(sqrt91sqrt93))

:. theta=cos^-1(-71/(sqrt8463))=(140.51)^circ