What is the angle between <-3,2,0 > <3,2,0> and <6,-9,8> <6,9,8>?

1 Answer
Jan 20, 2017

The angle is =137.9=137.9º

Explanation:

The angle between vecAA and vecBB is given by the dot product definition.

vecA.vecB=∥vecA∥*∥vecB∥costhetaA.B=ABcosθ

Where thetaθ is the angle between vecAA and vecBB

The dot product is

vecA.vecB=〈-3,2,0〉.〈6,-9,8〉=-18-18+0=-36A.B=3,2,0.6,9,8=1818+0=36

The modulus of vecAA= ∥〈-3,2,0〉∥=sqrt(9+4+0)=sqrt133,2,0=9+4+0=13

The modulus of vecBB= ∥〈6,-9,8〉∥=sqrt(36+81+64)=sqrt1816,9,8=36+81+64=181

So,

costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=-36/(sqrt13*sqrt181)=-0.742cosθ=A.BAB=3613181=0.742

theta=137.9θ=137.9º