What is the angle between <-4,3,-8 > and < 6,-3,8 >?

1 Answer
Oct 19, 2016

Angle between < -4,3,-8> and < 6,-3,8> is 170.01^o

Explanation:

Angle between two vectors vecu=a_1hati+b_1hatj+c_1hatk or < a_1,b_1,c_1>

and vecv=a_2hati+b_2hatj+c_2hatk or < a_2,b_2,c_2> is given by

costheta=((vecu*vecv))/((|vecu|*|vecv|)),

where vecu*vecv=a_1a_2+b_1b_2+c_1c_2

and |vecu| or |vecv| are magnitudes of vectors vecu or vecv and here they are

sqrt(a_1^2+b_1^2+c_1^2) and sqrt(a_2^2+b_2^2+c_2^2)

Hence angle between < -4,3,-8> and < 6,-3,8> is given by

costheta=((-4)xx6+3xx(-3)+(-8)xx8)/(sqrt((-4)^2+3^2+(-8)^2)xxsqrt(6^2+(-3)^2+8^2))

= (-24-9-64)/(sqrt(16+9+64)xxsqrt(36+9+64))

= -97/(sqrt89xxsqrt109)

= -97/(9.43398xx10.44031)

= -0.9848

and theta=170.01^o