The angle between vecA→A and vecB→B is given by the dot product definition.
vecA.vecC=∥vecA∥*∥vecB∥costheta→A.→C=∥→A∥⋅∥→B∥cosθ
Where thetaθ is the angle between vecA→A and vecB→B
The dot product is
vecA.vecB=〈5,7,1〉.〈5,1,7〉=25+7+7=39→A.→B=⟨5,7,1⟩.⟨5,1,7⟩=25+7+7=39
The modulus of vecA→A= ∥〈5,7,1〉∥=sqrt(25+49+1)=sqrt75∥∥⟨5,7,1⟩∥=√25+49+1=√75
The modulus of vecC→C= ∥〈5,1,7〉∥=sqrt(15+1+49)=sqrt75∥∥⟨5,1,7⟩∥=√15+1+49=√75
So,
costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=39/(sqrt75*sqrt75)=39/75=0.52cosθ=→A.→C∥∥∥→A∥⋅∥→C∥∥∥=39√75⋅√75=3975=0.52
theta=58.7θ=58.7º