What is the angle between <5,7,1><5,7,1> and <5,1,7> <5,1,7>?

1 Answer
Jan 18, 2017

The angle is 58.758.7º

Explanation:

The angle between vecAA and vecBB is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecB∥costhetaA.C=ABcosθ

Where thetaθ is the angle between vecAA and vecBB

The dot product is

vecA.vecB=〈5,7,1〉.〈5,1,7〉=25+7+7=39A.B=5,7,1.5,1,7=25+7+7=39

The modulus of vecAA= ∥〈5,7,1〉∥=sqrt(25+49+1)=sqrt755,7,1=25+49+1=75

The modulus of vecCC= ∥〈5,1,7〉∥=sqrt(15+1+49)=sqrt755,1,7=15+1+49=75

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=39/(sqrt75*sqrt75)=39/75=0.52cosθ=A.CAC=397575=3975=0.52

theta=58.7θ=58.7º