What is the angle between <5,9,-2 > <5,9,2> and < 6,-2,7><6,2,7>?

1 Answer
Nov 26, 2016

Angle between the vectors is 91.16^091.160

Explanation:

Let vecu =<5,9, -2> and vecv =<6,-2,7> ; thetau=<5,9,2>andv=<6,2,7>;θ be the angle

between them ; then we know cos theta= (vecu*vecv)/(||vecu||*||vecv||)=((5*6)+(9* -2)+(-2*7))/(sqrt(5^2+9^2+ (-2)^2)* (sqrt(6^2+(-2)^2+7^2))cosθ=uvuv=(56)+(92)+(27)52+92+(2)2(62+(2)2+72) = -2/(sqrt110*sqrt89)==-0.02021336:. theta=cos^-1(-0.02021336)=91.16^0[Ans]