What is the angle between <7 , -2 , -4 > <7,2,4> and < 5 , -2 , 1 > <5,2,1>?

1 Answer
Nov 12, 2016

theta ~~ 0.69" radians" θ0.69 radians

Explanation:

Compute the dot-product:

< 7, -2, -4 > * < 5, -2, 1 > = (7)(5) + (-2)(-2) + (-4)(1)<7,2,4><5,2,1>=(7)(5)+(2)(2)+(4)(1)

< 7, -2, -4 > * < 5, -2, 1 > = 35<7,2,4><5,2,1>=35

Compute the magnitude of both vectors:

|< 7, -2, -4 >| = sqrt(7^2 + (-2)^2 + (-4)^2)|<7,2,4>|=72+(2)2+(4)2

|< 7, -2, -4 >| = sqrt(69)|<7,2,4>|=69

|< 5, -2, 1 >| = sqrt(5^2 + (-2)^2 + 1^2)|<5,2,1>|=52+(2)2+12

|< 5, -2, 1 >| = sqrt(30)|<5,2,1>|=30

The other way to compute the dot-product is:

< 7, -2, -4 > * < 5, -2, 1 > = |< 7, -2, -4 >||< 5, -2, 1 >|cos(theta)<7,2,4><5,2,1>=|<7,2,4>||<5,2,1>|cos(θ)

where thetaθ is the angle between the two vectors.

Substitute the values that we have computed:

35 = sqrt(69)sqrt(30)cos(theta)35=6930cos(θ)

Solve for thetaθ:

theta = cos^-1(35/sqrt({69}{30}))θ=cos1(35{69}{30})

theta ~~ 0.69" radians" θ0.69 radians