What is the angle between <8,7,6> and <-1,6,1>?

1 Answer
Jan 18, 2017

The angle is 57.9º

Explanation:

The angle between vecA and vecB is given by the dot product definition.

vecA.vecB=∥vecA∥*∥vecB∥costheta

Where theta is the angle between vecA and vecB

The dot product is

vecA.vecB=〈8,7,6〉.〈-1,6,1〉=-8+42+6=40

The modulus of vecA= ∥〈8,7,6〉∥=sqrt(64+49+36)=sqrt149

The modulus of vecB= ∥〈-1,6,1〉∥=sqrt(1+36+1)=sqrt38

So,

costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=40/(sqrt38*sqrt149)=0.53

theta=57.9º