What is the angle between <9,1,4> <9,1,4> and <6,-1,4 ><6,1,4>?

1 Answer
Aug 2, 2018

theta=cos^-1(69/(7sqrt106))θ=cos1(697106)

Explanation:

Let , veca=<9,1,4> and vecb=<6,-1,4>a=<9,1,4>andb=<6,1,4> be the two vectors.

:.|veca|=sqrt((9)^2+(1)^2+(4)^2)=sqrt(81+1+16)=sqrt98=7sqrt2

and|vecb|=sqrt((6)^2+(-1)^2+(4)^2)=sqrt(36+1+16)=sqrt53

Dot product : a*b=9xx6+1xx(-1)+4xx4

:.a*b=54-1+16=69

Now the angle between veca and vecb is:

theta=cos^-1((a*b)/(|veca||vecb|))=cos^-1(69/(7sqrt2sqrt53))

:. theta=cos^-1(69/(7sqrt106))=(16.78)^circ