What is the antiderivative of a polynomial?

1 Answer
Oct 17, 2014

Let

f(x)=a_nx^n+a_{n-1}x^{n-1}+cdots+a_1x+a_0f(x)=anxn+an1xn1++a1x+a0.

An antiderivative F(x)F(x)of f(x)f(x) can be found by

F(x)=int f(x)dxF(x)=f(x)dx

=int(a_nx^n+a_{n-1}x^{n-1}+cdots+a_1x+a_0)dx=(anxn+an1xn1++a1x+a0)dx

=a_n/{n+1}x^{n+1}+a_{n-1}/nx^n+cdots+a_1/2x^2+a_0x+C=ann+1xn+1+an1nxn++a12x2+a0x+C.


I hope that this was helpful.