What is the antiderivative of ln(2x)/x^(1/2)ln(2x)x12?

1 Answer
Feb 9, 2017

= 2 x^(1/2) ( ln(2x) - 2) + C=2x12(ln(2x)2)+C

Explanation:

int ln(2x)/x^(1/2) dxln(2x)x12dx

We set it up for IBP:
= int ln(2x) d/dx(2 x^(1/2) ) dx=ln(2x)ddx(2x12)dx

Applying the IBP:
= 2 x^(1/2) ln(2x) - int d/dx( ln(2x) )(2 x^(1/2) ) dx=2x12ln(2x)ddx(ln(2x))(2x12)dx

= 2 x^(1/2) ln(2x) - int 1/x * 2 x^(1/2) dx=2x12ln(2x)1x2x12dx

= 2 x^(1/2) ln(2x) - 2 int x^(-1/2) dx=2x12ln(2x)2x12dx

= 2 x^(1/2) ln(2x) - 2* 2 x^(1/2) + C=2x12ln(2x)22x12+C

= 2 x^(1/2) ( ln(2x) - 2) + C=2x12(ln(2x)2)+C