What is the antiderivative of ln x / x^(1/2)lnxx12?

1 Answer
Jun 27, 2018

int lnx/x^(1/2) dx = 2 sqrtx(lnx - 2)+Clnxx12dx=2x(lnx2)+C

Explanation:

Integrate by parts:

int lnx/x^(1/2) dx = int lnx * x^(-1/2)dxlnxx12dx=lnxx12dx

int lnx/x^(1/2) dx = 2 int lnx * d/dx (x^(1/2)) dxlnxx12dx=2lnxddx(x12)dx

int lnx/x^(1/2) dx = 2 x^(1/2)lnx - 2 int x^(1/2)*d/dx(lnx)dxlnxx12dx=2x12lnx2x12ddx(lnx)dx

int lnx/x^(1/2) dx = 2 x^(1/2)lnx - 2 int x^(1/2)*1/xdxlnxx12dx=2x12lnx2x121xdx

int lnx/x^(1/2) dx = 2 x^(1/2)lnx - 2 int x^(-1/2)dxlnxx12dx=2x12lnx2x12dx

int lnx/x^(1/2) dx = 2 x^(1/2)lnx - 4 x^(+1/2)+Clnxx12dx=2x12lnx4x+12+C

int lnx/x^(1/2) dx = 2 x^(1/2)(lnx - 2)+Clnxx12dx=2x12(lnx2)+C