What is the antiderivative of lnx? Calculus Techniques of Integration Integration by Parts 1 Answer Monzur R. Mar 16, 2018 ∫lnxdx=x(lnx−1)+c Explanation: To find an antiderivative of lnx, we must find ∫lnxdx. To do so, we use integration by parts. ∫udv=uv−∫vdu Let u=lnx⇒du=1xdx And dv=dx⇒v=x So ∫lnxdx=xlnx−∫dx=xlnx−x=x(lnx−1) Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 133363 views around the world You can reuse this answer Creative Commons License