What is the antiderivative of xlnx?
1 Answer
Apr 19, 2016
Explanation:
Using integration by parts:
∫udv=uv−∫vdu
In the case of
∫xlnxdx
We let
u=lnx ⇒ dudx=1x ⇒ du=1xdx
dv=xdx ⇒ ∫dv=∫xdx ⇒ v=x22
Thus, plugging these in, we see that
∫xlnxdx=(x22)lnx−∫x22(1x)dx
=x2lnx2−∫x2dx
=x2lnx2−x24+C