What is the average value of the function f(x)=2x3(1+x2)4 on the interval [0,2]?

1 Answer
Apr 11, 2016

The average value is 49485=989.6

Explanation:

The average value of f on interval [a,b] is 1babaf(x)dx

So we get:

120202x3(x2+1)4dx=2220x3(x8+4x6+10x4+4x2+1)dx

=20(x11+4x9+10x7+4x5+x3)dx

=x1212+4x1010+6x88+4x66+x44]20

=(2)1212+2(2)105+3(2)84+2(2)63+(2)44

=49485=989610=989.6