What is the Cartesian form of (r-1)^2 = tan^2theta-4sectheta (r1)2=tan2θ4secθ?

1 Answer
Feb 18, 2017

x^2(x^2+y^2)+(x^2-y^2)+2xsqrt(x^2+y^2)(2-x)=0x2(x2+y2)+(x2y2)+2xx2+y2(2x)=0. See Socratic graph, for the Cartesian form.

Explanation:

Use r(costheta, sintheta)=(x, y)r(cosθ,sinθ)=(x,y), giving r=sqrt(x^2+y^2)>=0r=x2+y20.

.Here,

(sqrt(x^2+y^2)-1)^2=y^2/x^2-sqrt(x^2+y^2)/x(x2+y21)2=y2x2x2+y2x.

Expansion and simplification give the answer.
graph{x^2+y^2+sqrt(x^2+y^2)(4/x-2)+1-y^2/x^2=0 [-10, 10, -5, 5]}