What is the Cartesian form of r^2-2r = -theta+tan(theta)- cos^2(theta) r22r=θ+tan(θ)cos2(θ)?

1 Answer
Jul 17, 2018

x^2+y^2-2sqrt(x^2+y^2)=-arctan(y/x)+y/x-x^2/(x^2+y^2)x2+y22x2+y2=arctan(yx)+yxx2x2+y2

Explanation:

We are Using

x=r cos(theta)x=rcos(θ)

y=r sin(theta)y=rsin(θ)
theta=arctan(y/x)θ=arctan(yx)
r=sqrt(x^2+y^2)r=x2+y2

so we get

x^2+y^2-2sqrt(x^2+y^2)=-arctan(y/x)+y/x-x^2/(x^2+y^2)x2+y22x2+y2=arctan(yx)+yxx2x2+y2