What is the Cartesian form of r^2-4r = sin(theta) - 5 cos(theta) ?

1 Answer
Mar 2, 2016

4x^2+4y^2-5x+y=(x^2+y^2)^(3/2)

Explanation:

To convert a polar coordinate (r,theta) in Cartesian form we use relation r=sqrt(x^2+y^2), rcostheta=x, rsintheta=y and theta=tan^(-1)(y/x). Using these relations

r^2−4r=sintheta−5costheta cann be written as

r^3-4r^2=rsintheta−5rcostheta or

(x^2+y^2)^(3/2)-4(x^2+y^2)=y-5x or

4x^2+4y^2-5x+y=(x^2+y^2)^(3/2)