What is the Cartesian form of r^2+theta = -sin^2theta+4cot^3theta r2+θ=sin2θ+4cot3θ?

1 Answer
Oct 20, 2016

Please see the explanation, because this breaks into 3 equations.

Explanation:

Multiply both sides by r^5sin^3(theta)r5sin3(θ):

r^7sin^3(theta) + (theta)r^5sin^3(theta) = 4r^5cos^3(theta) - r^5sin^5(theta)r7sin3(θ)+(θ)r5sin3(θ)=4r5cos3(θ)r5sin5(θ)

Do some regrouping:

r^4(rsin(theta))^3 + (theta)r^2(rsin(theta))^3 = 4r^2(rcos(theta))^3 - (rsin(theta))^5r4(rsin(θ))3+(θ)r2(rsin(θ))3=4r2(rcos(θ))3(rsin(θ))5

Substitute x for (rcos(theta))(rcos(θ)) and y for (rsin(theta))(rsin(θ)):

r^4y^3 + (theta)r^2y^3 = 4r^2x^3 - y^5r4y3+(θ)r2y3=4r2x3y5

Substitute (x^2 + y^2)(x2+y2) for r^2r2

(x^2 + y^2)^2y^3 + (theta)(x^2 + y^2)y^3 = 4(x^2 + y^2)x^3 - y^5(x2+y2)2y3+(θ)(x2+y2)y3=4(x2+y2)x3y5

We cannot merely substitute tan^-1(y/x)tan1(yx) for thetaθ; we must specify that x!=0 and y!=0x0andy0 and then handle special cases for x < 0x<0, x > 0 and y>=0x>0andy0, and x > 0 and y < 0x>0andy<0

For x > 0 and y>0x>0andy>0:

(x^2 + y^2)^2y^3 + tan^-1(y/x)(x^2 + y^2)y^3 = 4(x^2 + y^2)x^3 - y^5(x2+y2)2y3+tan1(yx)(x2+y2)y3=4(x2+y2)x3y5

For x < 0x<0:

(x^2 + y^2)^2y^3 + (tan^-1(y/x) + pi)(x^2 + y^2)y^3 = 4(x^2 + y^2)x^3 - y^5(x2+y2)2y3+(tan1(yx)+π)(x2+y2)y3=4(x2+y2)x3y5

For x > 0 and y < 0x>0andy<0

(x^2 + y^2)^2y^3 + (tan^-1(y/x) + 2pi)(x^2 + y^2)y^3 = 4(x^2 + y^2)x^3 - y^5(x2+y2)2y3+(tan1(yx)+2π)(x2+y2)y3=4(x2+y2)x3y5