What is the Cartesian form of r^2+theta = -tan^2theta+4cot^3theta r2+θ=tan2θ+4cot3θ?

1 Answer
May 15, 2016

x^2 - (4 x^3)/y^3 + y^2 + y^2/x^2 + arctan(y/x) = 0x24x3y3+y2+y2x2+arctan(yx)=0

Explanation:

From pass equations
x = r cos(theta)x=rcos(θ)
y=r sin(theta)y=rsin(θ)
dividing we get
y/x=tan(theta), x/y=cot(theta)yx=tan(θ),xy=cot(θ)
and also
\theta=arctan(y/x)θ=arctan(yx)
After substituting r = x/cos(theta)r=xcos(θ) we substitute for \thetaθ
obtaining the result shown