What is the Cartesian form of r = -csc^2theta+4sec^2theta r=csc2θ+4sec2θ?

1 Answer
Jul 21, 2016

x^2y^2=(4y^2-x^2)sqrt(x^2+y^2)x2y2=(4y2x2)x2+y2

Explanation:

Relation between polar coordinates (r,theta)(r,θ) and rectangular coordinates is given by x=rcosthetax=rcosθ, y=rsinthetay=rsinθ, r^2=x^2+y^2r2=x2+y2 and tantheta=y/xtanθ=yx.

Hence, r=-csc^2theta+4sec^2thetar=csc2θ+4sec2θ

hArrr=-1/sin^2theta+4/cos^2thetar=1sin2θ+4cos2θ or

r=-r^2/y^2+(4r^2)/x^2r=r2y2+4r2x2 or

1=-r/y^2+(4r)/x^2=(r(-x^2+4y^2))/(x^2y^2)1=ry2+4rx2=r(x2+4y2)x2y2 or

x^2y^2=(4y^2-x^2)sqrt(x^2+y^2)x2y2=(4y2x2)x2+y2

graph{x^2y^2=(4y^2-x^2)sqrt(x^2+y^2) [-25.1, 25.08, -12.55, 12.55]}