What is the Cartesian form of r = -sin^2theta-thetacsc^2theta r=sin2θθcsc2θ?

1 Answer
Aug 4, 2018

See answer in the explanation.

Explanation:

Using

0 <= r = sqrt ( x^2 + y^2 ), r ( cos theta, sin theta ) = ( x, y )0r=x2+y2,r(cosθ,sinθ)=(x,y).

theta = arctan (y/x ), theta in Q_1θ=arctan(yx),θQ1 or Q_4Q4 and

theta = pi + arctan (y/x ), theta in Q_2θ=π+arctan(yx),θQ2 or Q_3Q3

r = - sin^2theta -theta csc^2thetar=sin2θθcsc2θ converts to

sqrt ( x^2 + y^2 ) = -y^2/( x^2 + y^2) - phi/y^2( x^2 + y^2 )x2+y2=y2x2+y2ϕy2(x2+y2),

where

phi = arctan (y/x ), theta in Q_1ϕ=arctan(yx),θQ1 or Q_4Q4 and

= pi + arctan (y/x ), theta in Q_2=π+arctan(yx),θQ2 or Q_3Q3

See graph.
graph{y^2(x^2+y^2)^1.5+y^4 + (x^2+y^2)^2 arctan (y/x )=0}
Graph for the wholesome inverse.
graph{tan((y^2(x^2+y^2)^1.5+y^4)/(x^2+y^2))-1=0}