What is the Cartesian form of r-theta = -2sin^2theta-cot^3theta rθ=2sin2θcot3θ?

1 Answer
Mar 20, 2016

Set:

x=rcosθ

y=rsinθ

Answer is:

sqrt(x^2+y^2)-arccos(x/sqrt(x^2+y^2))=-2x^2/(x^2+y^2)-x^3/y^3

Explanation:

According to the following picture:

![https://www.mathsisfun.com/](useruploads.socratic.org)

Set:

x=rcosθ

y=rsinθ

So we have:

cosθ=x/r

sinθ=y/r

θ=arccos(x/r)=arcsin(y/r)

r=sqrt(x^2+y^2)

The equation becomes:

r-θ=-2sin^2θ-cot^3θ

r-θ=-2sin^2θ-cos^3θ/sin^3θ

sqrt(x^2+y^2)-arccos(x/r)=-2x^2/r^2-(x^3/r^3)/(y^3/r^3)

sqrt(x^2+y^2)-arccos(x/r)=-2x^2/r^2-x^3/y^3

sqrt(x^2+y^2)-arccos(x/sqrt(x^2+y^2))=-2x^2/sqrt(x^2+y^2)^2-x^3/y^3

sqrt(x^2+y^2)-arccos(x/sqrt(x^2+y^2))=-2x^2/(x^2+y^2)-x^3/y^3