rtheta+r=2costheta-cotthetaxxsecthetarθ+r=2cosθ−cotθ×secθ
x=rcosthetax=rcosθ
y=rsinthetay=rsinθ
r=sqrt(x^2+y^2)r=√x2+y2
theta=tan^-1(y/x)θ=tan−1(yx)
tantheta=y/xtanθ=yx
costheta=x/r=x/sqrt(x^2+y^2)cosθ=xr=x√x2+y2
cottheta=1/tantheta=1/(y/x)=x/ycotθ=1tanθ=1yx=xy
sectheta=1/costheta=1/(x/sqrt(x^2+y^2))=(sqrt(x^2+y^2))/xsecθ=1cosθ=1x√x2+y2=√x2+y2x
Thus,
rtheta+r=2costheta-cotthetaxxsectheta " becomes"rθ+r=2cosθ−cotθ×secθ becomes
(sqrt(x^2+y^2))(tan^-1(y/x))+(sqrt(x^2+y^2))=2xxx/sqrt(x^2+y^2)-x/yxx(sqrt(x^2+y^2))/x(√x2+y2)(tan−1(yx))+(√x2+y2)=2×x√x2+y2−xy×√x2+y2x
#
Simplifying
(sqrt(x^2+y^2))(1+tan^-1(y/x))-(sqrt(x^2+y^2))/y(√x2+y2)(1+tan−1(yx))−√x2+y2y