What is the cross product of << -1, -1, 2 >>1,1,2 and << 4,3,6 >> 4,3,6?

1 Answer
Nov 9, 2016

Well, you have at least two ways to do it.

The first way:

Let vecu = << u_1,u_2,u_3 >>u=u1,u2,u3 and vecv = << v_1,v_2,v_3 >>v=v1,v2,v3. Then:

color(blue)(vecu xx vecv) = << u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1 >>u×v=u2v3u3v2,u3v1u1v3,u1v2u2v1

= << -1*6 - 2*3, 2*4 - (-1*6), -1*3 - (-1*4) >>=1623,24(16),13(14)

= color(blue)(<< -12, 14, 1 >>)=12,14,1

Assuming you didn't know that formula, the second way (which is a little more foolproof) is recognizing that:

hati xx hatj = hatkˆi׈j=ˆk
hatj xx hatk = hatiˆj׈k=ˆi
hatk xx hati = hatjˆk׈i=ˆj
hatA xx hatA = vec0ˆA׈A=0
hatA xx hatB = -hatB xx hatAˆA׈B=ˆB׈A

where hati = << 1,0,0 >>ˆi=1,0,0, hatj = << 0,1,0 >>ˆj=0,1,0, and hatk = << 0,0,1 >>ˆk=0,0,1.

Thus, rewriting the vectors in unit vector form:

(-hati - hatj + 2hatk)xx(4hati + 3hatj + 6hatk)(ˆiˆj+2ˆk)×(4ˆi+3ˆj+6ˆk)

= cancel(-4(hati xx hati))^(0) - 3(hati xx hatj) - 6(hati xx hatk) - 4(hatj xx hati) - cancel(3(hatj xx hatj))^(0) - 6(hatj xx hatk) + 8(hatk xx hati) + 6(hatk xx hatj) + cancel(12(hatk xx hatk))^(0)

= -3hatk + 6hatj + 4hatk - 6hati + 8hatj - 6hati

= - 12hati + 14hatj + hatk

= color(blue)(<< -12, 14, 1 >>)

as expected.