The cross product of 2 vectors is calculated with the determinant
#| (veci,vecj,veck), (d,e,f), (g,h,i) | #
where #veca=〈d,e,f〉# and #vecb=〈g,h,i〉# are the 2 vectors
Here, we have #veca=〈1,-2,-3〉# and #vecb=〈3,7,9〉#
Therefore,
#| (veci,vecj,veck), (1,-2,-3), (3,7,9) | #
#=veci| (-2,-3), (7,9) | -vecj| (1,-3), (3,9) | +veck| (1,-2), (3,7) | #
#=veci((-2)*(9)-(-3)*(7))-vecj((1)*(9)-(-3)*(3))+veck((1)*(7)-(-2)*(3))#
#=〈3,-18,13〉=vecc#
Verification by doing 2 dot products
#〈3,-18,13〉.〈1,-2,-3〉=(3)*(1)+(-18)*(-2)+(13)*(-3)=0#
#〈3,-18,13〉.〈3,7,9〉=(3)*(3)+(-18)*(7)+(13)*(9)=0#
So,
#vecc# is perpendicular to #veca# and #vecb#