What is the cross product of [2, 6, -1] and [3, -4, 2] ?

1 Answer
May 10, 2017

The andwer is =〈8,-7,-26〉

Explanation:

The cross product of 2 vectors is calculated with the determinant

| (veci,vecj,veck), (d,e,f), (g,h,i) |

where 〈d,e,f〉 and 〈g,h,i〉 are the 2 vectors

Here, we have veca=〈2,6,-1〉 and vecb=〈3,-4,2〉

Therefore,

| (veci,vecj,veck), (2,6,-1), (3,-4,2) |

=veci| (6,-1), (-4,2) | -vecj| (2,-1), (3,2) | +veck| (2,6), (3,-4) |

=veci(6*2-1*4)-vecj(2*2+1*3)+veck(-2*4-6*3)

=〈8,-7,-26〉=vecc

Verification by doing 2 dot products

〈8,-7,-26〉.〈2,6,-1〉=8*2-6*7+26*1=0

〈8,-7,-26〉.〈3,-4,2〉=8*3+7*4-26*2=0

So,

vecc is perpendicular to veca and vecb