What is the cross product of [3, 1, -4][3,1,4] and [3, -4, 2] [3,4,2]?

1 Answer
Nov 17, 2016

The vector is =〈-14,-18,-15〉=14,18,15

Explanation:

Let vecu=〈3,1,-4〉u=3,1,4 and vecv=〈3,-4,2〉 v=3,4,2

The cross product is given by the determinant

vecuu x vecvv = | (veci,vecj,veck), (3,1,-4), (3,-4,2) |

= veci| (1,-4), (-4,2) | -vecj | (3,-4), (3,2) | +veck | (3,1), (3,-4) |

=veci(2-16)+vecj(-6-12)+veck(-12-3)

=vecw=〈-14,-18,-15〉

Verification, the dot products must de 0

vecu.vecw=〈3,1,-4〉.〈-14,-18,-15〉=(-42-18+60)=0

vecv.vecw=〈3,-4,2〉.〈-14,-18,-15〉=(-42+72-30)=0

Therefore, vecw is perpendicular to vecu and vecv