What is the cross product of <-3 ,-6 ,-3 ><3,6,3> and <-2 ,1 , -7 ><2,1,7>?

1 Answer
Apr 9, 2017

The vector is =〈45,-15,-15〉=45,15,15

Explanation:

The cross product of 2 vectors is

| (veci,vecj,veck), (d,e,f), (g,h,i) |

where 〈d,e,f〉 and 〈g,h,i〉 are the 2 vectors

Here, we have veca=〈-3,-6,-3〉 and vecb=〈-2,1,-7〉

Therefore,

| (veci,vecj,veck), (-3,-6,-3), (-2,1,-7) |

=veci| (-6,-3), (1,-7) | -vecj| (-3,-3), (-2,-7) | +veck| (-3,-6), (-2,1) |

=veci(-6*-7+3*1)-vecj(-3*-7-3*2)+veck(-3*1-6*2)

=〈45,-15,-15〉=vecc

Verification by doing 2 dot products

〈45,-15,-15〉.〈-3,-6,-3〉=-45*3+6*15+3*15=0

〈45,-15,-15〉.〈-2,1,-7〉=-45*2-15*1+15*7=0

So,

vecc is perpendicular to veca and vecb