The cross product of 2 vectors is calculated with the determinant
#| (veci,vecj,veck), (d,e,f), (g,h,i) | #
where #veca=〈d,e,f〉# and #vecb=〈g,h,i〉# are the 2 vectors
Here, we have #veca=〈4,5,-9〉# and #vecb=〈4,3,-3〉#
Therefore,
#| (veci,vecj,veck), (4,5,-9), (4,3,-3) | #
#=veci| (5,-9), (3,-3) | -vecj| (4,-9), (4,-3) | +veck| (4,5), (4,3) | #
#=veci((5)*(-3)-(9)*(-3))-vecj((4)*(-3)-(9)*(4))+veck((4)*(3)-(4)*(5))#
#=〈12,-24,-8〉=vecc#
Verification by doing 2 dot products
#〈12,-24,-8〉.〈4,5,-9〉=(12)*(4)+(-24)*(5)+(-8)*(-9)=0#
#〈12,-24,-8〉.〈4,3,-3〉=(12)*(4)+(-24)*(3)+(-8)*(-3)=0#
So,
#vecc# is perpendicular to #veca# and #vecb#